ROADNet and HiSeasNet

ForceNet

16 November 2005

Frank Vernon
Scripps Institution of Oceanography
University of California
San Diego

NSF Ocean Observatories Initiative

HiSeas Net A Real Real-World Application

HiSeasNet, ROADNet Architecture

Sensor Network Stack Instantiated

Portal GridSphere Workflows Kepler, Custom portlets **Services** Pub/Sub (Apache AXIS WS) **Admin Analysis Data** Management and and Antelope, SRB, **Visualization** Control **Real-time Distributed Instrument Control** Sensors

Definition of standard interfaces

Scalability and Generalization

Scalability

- Manual configuration practical as observing systems evolve into 100s and 1000s of sensors
- Decouple management task from physical system
 - Don't have to log in to each host to effect changes
- Requires programmable access to full instrument and data stream lifecycle & resource registry

Generalization

- Lots of big, distributed observing projects on the horizon (LOOKING, ORION, NEON, etc.)
- USArray active case of challenges faced by all large-scale observing systems
- Common needs: modularization, automation, resource registries and standardization of interfaces
- Critical for federation of observing systems

Related References

- http://anf.ucsd.edu
- http://hiseasnet.ucsd.edu
- http://lookingtosea.ucsd.edu
- http://hpwren.ucsd.edu
- http://roadnet.ucsd.edu
- http://sccoos.ucsd.edu

